Postsynaptic kinase signaling underlies inhibitory synaptic plasticity in the lateral superior olive.
نویسندگان
چکیده
UNLABELLED In the auditory system, inhibitory transmission from the medial nucleus of the trapezoid body (MNTB) to neurons of the lateral superior olivary nucleus (LSO) undergoes activity-dependent long-term depression, and may be associated with developmental elimination of these synapses [Sanes DH, Friauf E (2000). REVIEW development and influence of inhibition in the laterial superior olivary nucleus. Hear Res 147:46-58]. Although GABA(B) receptor activation and postsynaptic free calcium are implicated in this depression, little is known about intracellular signaling mechanisms in this or other forms of inhibitory plasticity. In this study, we asked whether the calcium dependency of inhibitory depression was associated with the activation of calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), and/or cAMP-dependent protein kinase A (PKA). Whole-cell voltage-clamp recordings were obtained from LSO neurons in a brain slice preparation, permitting for the selective pharmacologic manipulation of individual postsynaptic LSO neurons. Inclusion of a CaMKII antagonist (KN-62) in the internal pipet solution blocked inhibitory synaptic depression. A second CaMKII inhibitor (autocamtide peptide fragment) significantly decreased inhibitory depression. Inclusion of a specific antagonist of protein kinase C (PKC fragment 19-36) in the internal recording solution also blocked inhibitory depression. To test involvement of a cAMP-dependent intracellular cascade, two different manipulations were performed. Inclusion of PKA antagonists (Rp-cAMPS or a cAMP dependent protein kinase inhibitor peptide) prevented inhibitory depression. In contrast, when a nonhydrolyzable cAMP analog (Sp-cAMPS) was permitted to enter the postsynaptic cell, the MNTB-evoked IPSCs became depressed in the absence of low-frequency stimulation. Thus, three key postsynaptic kinases, CaMKII, PKC, and PKA, participate in the activity-dependent depression of inhibitory MNTB-LSO synapses during postnatal development.
منابع مشابه
GABA(B) and Trk receptor signaling mediates long-lasting inhibitory synaptic depression.
In many areas of the nervous system, excitatory and inhibitory synapses are reconfigured during early development. We have previously described the anatomical refinement of an inhibitory projection from the medial nucleus of the trapezoid body to the lateral superior olive in the developing gerbil auditory brain stem. Furthermore, these inhibitory synapses display an age-dependent form of long-...
متن کاملLong-lasting inhibitory synaptic depression is age- and calcium-dependent.
The developmental refinement of excitatory synapses is often influenced by neuronal activity, and underlying synaptic mechanisms have been suggested. In contrast, few studies have asked whether inhibitory synapses are reorganized during development and whether this is accompanied by use-dependent changes of inhibitory synaptic strength. The topographic inhibitory projection from the medial nucl...
متن کاملSerotonergic modulation of synapses in the developing gerbil lateral superior olive.
The lateral superior olive (LSO) is a primary site of binaural convergence that responds selectively to changes in interaural level difference (ILD) by integrating ipsilateral excitatory and contralateral inhibitory inputs. The circuit matures during the first three postnatal weeks, undergoing several structural and functional changes that are influenced by afferent activity. Therefore modulati...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملMembrane-Derived Phospholipids Control Synaptic Neurotransmission and Plasticity
Synaptic communication is a dynamic process that is key to the regulation of neuronal excitability and information processing in the brain. To date, however, the molecular signals controlling synaptic dynamics have been poorly understood. Membrane-derived bioactive phospholipids are potential candidates to control short-term tuning of synaptic signaling, a plastic event essential for informatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurobiology
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2002